3.1.77 \(\int \frac {1}{\sqrt {x} \sqrt {b \sqrt {x}+a x}} \, dx\)

Optimal. Leaf size=34 \[ \frac {4 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {a x+b \sqrt {x}}}\right )}{\sqrt {a}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 34, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2013, 620, 206} \begin {gather*} \frac {4 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {a x+b \sqrt {x}}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*Sqrt[b*Sqrt[x] + a*x]),x]

[Out]

(4*ArcTanh[(Sqrt[a]*Sqrt[x])/Sqrt[b*Sqrt[x] + a*x]])/Sqrt[a]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 2013

Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[(a*x^Simplify[j/n]
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j
/n]] && EqQ[Simplify[m - n + 1], 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \sqrt {b \sqrt {x}+a x}} \, dx &=2 \operatorname {Subst}\left (\int \frac {1}{\sqrt {b x+a x^2}} \, dx,x,\sqrt {x}\right )\\ &=4 \operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\sqrt {x}}{\sqrt {b \sqrt {x}+a x}}\right )\\ &=\frac {4 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b \sqrt {x}+a x}}\right )}{\sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 65, normalized size = 1.91 \begin {gather*} \frac {4 \sqrt {b} \sqrt [4]{x} \sqrt {\frac {a \sqrt {x}}{b}+1} \sinh ^{-1}\left (\frac {\sqrt {a} \sqrt [4]{x}}{\sqrt {b}}\right )}{\sqrt {a} \sqrt {a x+b \sqrt {x}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*Sqrt[b*Sqrt[x] + a*x]),x]

[Out]

(4*Sqrt[b]*Sqrt[1 + (a*Sqrt[x])/b]*x^(1/4)*ArcSinh[(Sqrt[a]*x^(1/4))/Sqrt[b]])/(Sqrt[a]*Sqrt[b*Sqrt[x] + a*x])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.14, size = 40, normalized size = 1.18 \begin {gather*} -\frac {2 \log \left (-2 \sqrt {a} \sqrt {a x+b \sqrt {x}}+2 a \sqrt {x}+b\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[x]*Sqrt[b*Sqrt[x] + a*x]),x]

[Out]

(-2*Log[b + 2*a*Sqrt[x] - 2*Sqrt[a]*Sqrt[b*Sqrt[x] + a*x]])/Sqrt[a]

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [A]  time = 0.26, size = 37, normalized size = 1.09 \begin {gather*} -\frac {2 \, \log \left ({\left | -2 \, \sqrt {a} {\left (\sqrt {a} \sqrt {x} - \sqrt {a x + b \sqrt {x}}\right )} - b \right |}\right )}{\sqrt {a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x, algorithm="giac")

[Out]

-2*log(abs(-2*sqrt(a)*(sqrt(a)*sqrt(x) - sqrt(a*x + b*sqrt(x))) - b))/sqrt(a)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 136, normalized size = 4.00 \begin {gather*} -\frac {\sqrt {a x +b \sqrt {x}}\, \left (-b \ln \left (\frac {2 a \sqrt {x}+b +2 \sqrt {\left (a \sqrt {x}+b \right ) \sqrt {x}}\, \sqrt {a}}{2 \sqrt {a}}\right )-b \ln \left (\frac {2 a \sqrt {x}+b +2 \sqrt {a x +b \sqrt {x}}\, \sqrt {a}}{2 \sqrt {a}}\right )+2 \sqrt {\left (a \sqrt {x}+b \right ) \sqrt {x}}\, \sqrt {a}-2 \sqrt {a x +b \sqrt {x}}\, \sqrt {a}\right )}{\sqrt {\left (a \sqrt {x}+b \right ) \sqrt {x}}\, \sqrt {a}\, b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(a*x+b*x^(1/2))^(1/2),x)

[Out]

-(a*x+b*x^(1/2))^(1/2)*(2*((a*x^(1/2)+b)*x^(1/2))^(1/2)*a^(1/2)-2*(a*x+b*x^(1/2))^(1/2)*a^(1/2)-b*ln(1/2*(2*a*
x^(1/2)+b+2*((a*x^(1/2)+b)*x^(1/2))^(1/2)*a^(1/2))/a^(1/2))-b*ln(1/2*(2*a*x^(1/2)+b+2*(a*x+b*x^(1/2))^(1/2)*a^
(1/2))/a^(1/2)))/((a*x^(1/2)+b)*x^(1/2))^(1/2)/b/a^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a x + b \sqrt {x}} \sqrt {x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(b*x^(1/2)+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(a*x + b*sqrt(x))*sqrt(x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {1}{\sqrt {x}\,\sqrt {a\,x+b\,\sqrt {x}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*(a*x + b*x^(1/2))^(1/2)),x)

[Out]

int(1/(x^(1/2)*(a*x + b*x^(1/2))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {x} \sqrt {a x + b \sqrt {x}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(b*x**(1/2)+a*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x)*sqrt(a*x + b*sqrt(x))), x)

________________________________________________________________________________________